RESEARCH ARTICLE

OPEN ACCESS

Dynamic Response of Rcc and Composite Structure with Brb Frame Subjected To Seismic and Temperature Load

Syeda Qurratul Aien Najia¹, Hashim Mohiuddin², Sumaiya Fatima³

¹Asst.Professor, Department Of Civil Engineering, Deccan College of Engg. & Tech., Hyderabad

ABSTRACT

Concrete structures impart more seismic weight and less deflection whereas Steel structures instruct more deflections and ductility to the structure, which is beneficial in resisting earthquake forces. Composite Construction combines the better properties of both steel and concrete. Buckling restrained braced frames (BRBFs) are primarily used as seismic-force resisting systems for buildings in seismically-active regions. The objective of the present work is to compare a twenty storied RCC and composite framed structure with BRB frame subjected to Seismic and different Temperatureloadings using Non-Linear Time History Analysis. Three dimensional modeling and analysis of the structure is carried out with the help of SAP-2000 v16 software. It is observed that the storey displacements were decreased by 36% for twenty storey RCC building and for composite buildings it was decreased by 45% for twenty storeys suggesting the effectiveness of Buckling restrained brace frame. The overall results suggested that BRB were excellent seismic control device for composite building as the roof displacement is reduced by 40% but whereas for RCC it is reduced only by 25%. For Seismic prone areas composite building with BRB frame is more effective. Under Temperature loading RCC building is more effective than composite structure.

Keywords: RCC Structure, Concrete Structure, BRB Frame, Seismic and Temperature load, SAP.

I. INTRODUCTION

A composite building with steel and the concrete sections would resist the external loading by interacting together by bond and friction. Supplementary reinforcement in the concrete encasement prevents excessive spalling of concrete both under normal load and fire conditions.

A buckling-restrained brace, or an unbounded brace, is a bracing member consisting of a steel core plate or another section encased in a concrete-filled steel tube over its length as shown in Figure. During an earthquake, seismic ground forces have the effect of applying lateral loads to buildings. If these loads are strong enough, they have the ability to damage the structure, leading to an economic loss or even loss of human life. In order to prevent both of these from happening, it is crucial to have buildings that are able to withstand seismic loads they may be subjected to. Structures fitted with BRBs are likely to absorb even more energy as both diagonal braces (in tension and compression) are resisting the lateral loads.

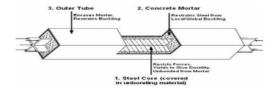


Figure 1. Buckling Restrained Brace cross sectional view

The objectives of the present study are:

- To study the Seismic behavior of RCC and Composite building using the Non-linear time history analysis with and without BRB Frame.
- 2. To find the effect of Temperature load on RCC and Composite building with BRB Frame.
- 3. To illustrate the effects of BRB Frame on the response of the High-rise Buildings.

II. STUDY AREAFIGURE

Bhuj is a place located in Gujarat which is a High intensity earthquake zone of zone factor 0.36 which comes under the Zone-V according to the classification of seismic zones by IS 1893-2002 part-1. The records are defined for acceleration points with respect to time interval of 0.005 seconds. The acceleration record has units of m/sec² and has total number of 26,706 acceleration data. Frame temperature load is defined for normal as well as for high temperature (28°C and 400°C respectively).

www.ijera.com 79|P a g e

²Professor, Department Of Civil Engineering, Deccan College of Engg. & Tech., Hyderabad ³Asst. Professor, Dept. Of Civil Engineering, Muffakhamjah College Of Engg. & Tech., Hyderabad

Figure 2. Bhuj Earthquake

III. MATERIAL AND METHOD

SAP 2000 is integrated software for analysis and design of structures. Using SAP nonlinear time history analysis is performed on the proposed building. Models are prepared by using assumptions; input data is feed into the SAP to analyze the structural parameters such as base shear, base moment, lateral displacement, storey drift, time period, bending moment and axial force. The following methodological approach is used for evaluating the Dynamic Response of RCC & Composite Structures using BRB frame.

- 1. Identification of study area
- 2. Collection of the data
- 3. Analysis and Results
- 4. Conclusions.

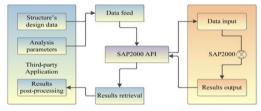


Figure 3. Application of SAP2000 API

S.No	Description	Information	Remarks
1.	Building height-20	60.0 m	Including
	storey		the
			foundation
			level
2.	Number of	Zero	
	basements below		
	ground		
3.	Open ground	Yes	
	storey		
4.	Special hazards	None	
5.	Type of building	Regular	IS
		Space	1893:2002
		frames	Clause 7.1
6.	Horizontal floor	Beams and	
	system	slabs	
7.	Software used	SAP 2000	
		V16	

Table 1. General data collection and condition assessment of building

	Seismic Load				
S.No.	Variable	Data			
1.	Type of structure	Moment Resisting Frame			
2.	Seismic Data	Bhuj Earthquake data			
3.	Number of Stories	20			
4.	Floor height	3 m			
5.	Plan Dimensions	88 m x 140 m			
6.	Total height of Building	60 m			
7.	Live Load	2.0 kN/m ²			
8.	Dead load	1.25 kN/m ² & wall load of 10 kN/m ²			
9.	Materials	Concrete (M25) and Reinforced with HYSD bars (Fe500)			
10.	Size of Columns	RCC structure 300x900 mm Composite structure 300x900 mm encased with ISMB 350			
11.	Size of Beams	RCC structure 300x600 mm Composite structure 300x600 mm encased with			
13.	Depth of slab	ISMB 350 125mm thick			
14.	BRBF	STARBRB-23.5			
15.	Specific weight of RCC	25 kN/m³			
16.	Zone	V			
17.	Importance Factor	1			
18.	Response Reduction Factor	3			
19.	Type of soil	Medium			

Table2. Preliminary data considered in the analysis of the framed structure for seismic load

	Temperature Load				
S.No.	Variable	Data			
1.	Type of structure	Moment Resisting Frame			
2.	Temperature Data	28°C and 400°C			
3.	Number of Stories	20			
4.	Floor height	3 m			
5.	Plan Dimensions	88 m x 140 m			
6.	Total height of Building	60 m			
9.	Materials	Concrete (M25) and Reinforced with HYSD bars (Fe500)			
		RCC structure 300x900 mm			
10.	Size of Columns	Composite structure 300x900 mm encased with ISMB 350			
		RCC structure 300x600 mm			
11.	Size of Beams	Composite structure 300x600 mm encased with ISMB 350			
13.	Depth of slab	125mm thick			
14.	BRBF	STARBRB-23.5			
15.	Specific weight of RCC	25 kN/m³			

Table3.Preliminary data considered for Temperature load

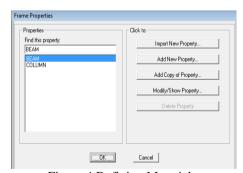


Figure 4.Defining Materials

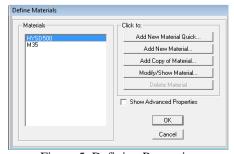
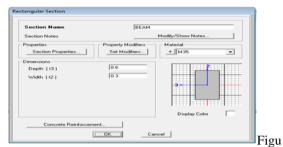



Figure 5. Defining Properties

www.ijera.com 80|P a g e

re6.Defining beam

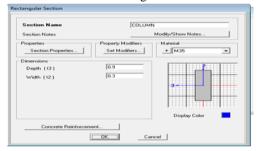


Figure 7. Defining Column

Figure 8. Selecting Type of Brace

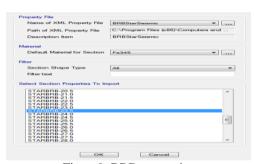


Figure 9. BRB properties

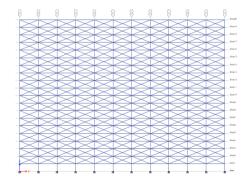


Figure 10.BRB in X-direction

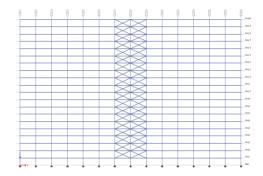


Figure 11. BRB in Y-direction

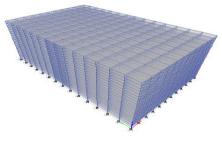


Figure 12. Showing 3D view of Model with BRB

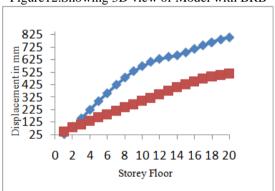
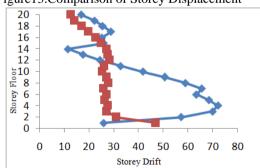



Figure 13. Comparison of Storey Displacement

14. Comparison of Storey Drift with& without BRB frame with & without BRB frame

www.ijera.com 81|P a g e

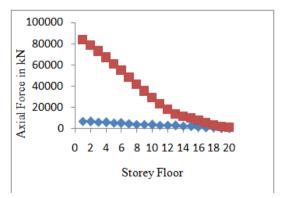
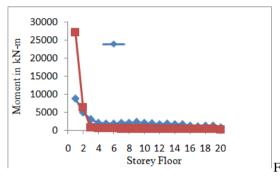



Figure 15. Comparison of Axial force

igure16. Comparison of Moment

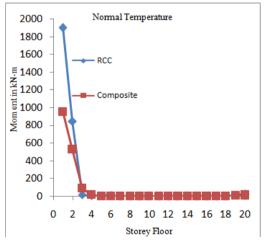


Figure 17. Moment of RCC and Composite building

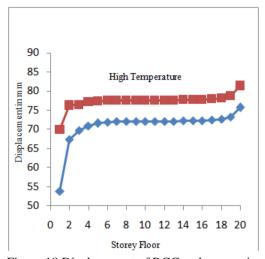


Figure 18.Displacement of RCC and composite Under Normal Temperature building under High Temperature

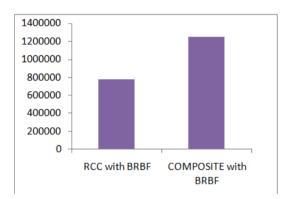


Figure 19. Base shear comparison for twenty storied

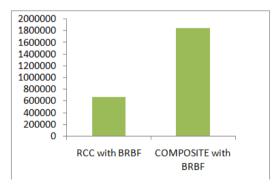


Figure 20. Base moment comparison for twenty storied RCC and Composite building with BRBFRCCand Composite building with BRBF

IV. CONCLUSIONS

- The storey displacements were decreased by 36% for RCC building and decreased by 45% for composite buildings suggesting the effectiveness of Buckling restrained brace frame.
- 2. The overall results suggested that BRB were excellent seismic control device for composite

www.ijera.com 82|P a g e

- building as the roof displacement is reduced by 40% but whereas for RCC it is reduced only by 25%. It suggests that they are excellent for composite structure.
- Lateral displacement and storey drifts were more in composite building model of fixed base with BRB frame but they are under permissible limits as compared with RCC building model of fixed base with BRB frame.
- 4. For Seismic prone areas composite building with BRB frame is more effective.
- Under Normal and High Temperature loading, displacement and Storey drift of RCC building with Buckling restrained brace frame is less as compared to composite building.

REFERENCES

- [1]. A.S.Elnashai and A.Y.Elghazouli (1993)
 "Performance Of Composite
 Steel/Concrete Members Under
 Earthquake Loading", Earthquake
 Engineering And Structural Dynamics,
 Vol. 22, pp. 315-345
- [2]. Anish N. Shah and Dr. P.S. Pajgade (2013) "Comparison of R.C.C. and Composite Multistoried Buildings", International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 2, pp.534-539
- [3]. Ashok R.Mundhada and Dr.ArunD.Pofale (2015) "Effect of High Temperature on Compressive Strength of Concrete", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), Vol. 12, Issue 1, pp. 66-70
- [4]. Ashok R.Mundhada and ArunD.Pophale (2013) "Effect of Elevated Temperatures on Performance of RCC Beams", International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development (IJCSEIERD), Vol. 3, Issue 3,pp. 105-112
- [5]. B.Dinesh Kumar and K vidhya (2014) "Numerical Study on Seismic And Temperature Effects in a RCC Building", International Journal of Engineering Research & Technology (IJERT), Vol. 3 Issue 5, pp. 827-830
- [6]. BehrouzAsgarian,
 HamedRahmanShokrgozar and
 MasoudAbitorabi (2008) "Effect of
 Design Loads in Buckling Restrained
 Braced Frames Performance", The 14th
 World Conference on Earthquake
 Engineering, October 12-17, Beijing,
 China
- [7]. C.Sangluaia, M.K. Haridharan, Dr.C.Natarajan and Dr.A.Rajaraman

- (2013) "Behaviour of Reinforced Concrete Slab Subjected To Fire", International Journal Of Computational Engineering Research, Vol. 3 Issue 1, pp. 195-206
- [8]. Chandrakant, Dr. D.K.Kulkarni (2014) "Retrofitting of Fire Affected Structural Member in Multistory Buildings", The International Journal of Science & Technoledge, Vol. 2, Issue 6, pp. 230-237
- [9]. D. R. Panchal and P. M. Marathe (2011) "Comparative Study of R.C.C, Steel and Composite (G+30 Storey) Building", International Conference on Current Trends in Technology, Institute of Technology, Nirma University, Ahmadabad 382 481, 08-10 December.
- [10]. E.Talebi and F.Zahmatkesh (2010) "Performance of BRBF System and Comparing it with the OCBF", World Academy of Science, Engineering and Technology, International Scholarly and Scientific Research & Innovation, Vol. 4, No. 8, pp. 678-685
- [11]. Ghobarah A. and AbouElfath H (2001). "Rehabilitation of a reinforced concrete frame using eccentric steel bracing", Engineering Structures, Vol. 23, pp. 745-755
- [12]. Ian A Fletcher (2009) "Tall Concrete Buildings Subjected To Vertically Moving Fires: A Case Study Approach", PhD Thesis – The University of Edinburgh School of Engineering
- [13]. IS 456:2000, "Code for practice of plain and reinforced concrete code of practice, Bureau of Indian Standards", New Delhi
- [14]. IS 1893:2002, "Code for earthquake resistant design of structures- general provisions for buildings, Part I, Bureau of Indian Standards", New Delhi
- [15]. IS 11384:1985, "Code of Practice for Design of Composite Structure, Bureau of Indian Standards", New Delhi
- [16]. IS 875 (1987-Part 1), —code of practice for design loads(other than earthquake)for buildings and structures ,Dead loads, Bureau of Indian standards (BIS), New Delhi
- [17]. M.A.Youssef, Ghaffarzadeh H and Nehdi M (2007) "Seismic performance of RC frames with concentric internal steel bracing", Engineering Structures, Vol. 29, pp. 1561-1568

www.ijera.com 83|P a g e